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Abstract
The (2+1)-dimensional Eckhaus-type extension of the dispersive long wave
(EEDLW) equation is investigated, which was obtained in the appropriate
approximation from the basic equations of hydrodynamics. Though it has
no Painlevé property, we gain an auto-Bäcklund transformation (aBT) by
truncating the Laurent series expansion at O(w0). In particular, the special
one of the aBT establishes a relationship between the EEDLW equation and a
set of three linear partial differential equations involving the well-known heat
equation. Finally many types of new exact solutions of the EEDLW equation
are found from the obtained aBT and some proper ansätze, which may be useful
to explain some physical phenomena.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

The investigation of exact solutions to nonlinear evolution equations (NLEEs) has become
an interesting subject in the field of nonlinear science [1] since the ‘soliton’ concept was
first introduced in 1965 [2]. Many physical NLEEs have been derived from both theoretical
and experimental work such as the KdV equation, the mKdV equation, the Burgers equation,
the Boussinesq equations, the dispersive long wave equation and the (2+1)-dimensional KP
equation, etc. The study of (2+1)-dimensional NLEEs, even higher dimensional NLEEs, has
also attracted more attention (see [1, 6–9, 11–16, 18] for details).

The popular (1+1)-dimensional dispersive long wave equation [1, 3]

ut + ηx + 1
2 (u2)x = 0 ηt + (uη + u + uxx)x = 0 (1)

plays an important role in nonlinear physics, which describes the evolution of horizontal
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velocity component u(x, t) of water waves of height η(x, t) propagating in both directions in
an infinite narrow channel of finite constant depth. Many properties of (1) have been reported
[3–5].

It is interesting to study the extensions of (1) in higher-dimensional spaces. To date,
there exist two prototypical extensions of (1) to cover the situation of wide channel or open
seas. In 1987, Boiti et al [6] presented the following (2+1)-dimensional extension related
to (1)

uty + ηxx + 1
2 (u2)xy = 0 ηt + (uη + u + uxy)x = 0 (2)

arising from the compatibility conditions {[T1, T2]ψ = 0, T1ψ = 0} of the ‘weak’ Lax
pair

T1ψ = [
∂x∂y − 1

2u(x, y, t)∂y − 1
4 (uy − 1 − η(x, y, t)

]
ψ = 0

T2ψ = [
∂t + ∂2

x + γ (x, y, t)
]
ψ = 0.

(3)

In the one-dimensional reduction u = u(x + y, t), η = η(x + y, t), system (2) reduces
to system (1). The Bäcklund transformation, soliton solutions and superposition were given
[6, 8]. Paquin and Winternitz [7] gave the infinite-dimensional symmetry groups and a
Kac–Moody–Virasoro structure of (2). It has been shown that (2) has no Painlevé property
[18], even if it has a Lax pair and is solvable by the inverse spectral transformation [6].

In 1985, Eckhaus [9] presented another different two-dimensional extension of (1)

ut + ηx + 1
2 (u2)x = 0 (4a)

ηtx + (uη + u + uxx)xx + uyy = 0 (4b)

which was obtained in the appropriate approximation from the basic equations of
hydrodynamics. It is easy to see that if one makes the transformation {u = u(x + y, t), η =
η(x + y, t) − 1} or {u = u(x, t), η = (x, t)}, then (4) can also reduce to (1). Therefore it
follows that these two systems (2) and (4) can both reduce to the same system (1) under the
proper transformations. But as Boiti et al [6] pointed out, system (2) is different from system
(4). It is shown that (4) possesses only finite-dimensional symmetry groups and is not Painlevé
integrable [7].

As far as we know, no work on other properties of (4) seems to have been reported such as
auto-Bäcklund transformation (aBT) and exact solutions, etc. As Flaschka et al [10] said, for
a system that does not have the Painlevé property and does not even have the Laurent property
for arbitrary singular manifold w, one may have also attempted to find a self-consistent system
of equations by truncating the Laurent series expansion at O(w0) with regard to whether the
system actually has the Laurent property.

In this paper, we would like to consider it by truncating the Laurent series expansion
at O(w0) such that an auto-Bäcklund transformation is obtained, though (4) does not pass
the Painlevé test. In particular, a special one of the aBT establishes a relationship between
(4) and a linear system involving three linear partial differential equations. Moreover many
types of new exact solutions of (4) are also obtained from the obtained aBT and some proper
ansätze.

The rest of the paper is organized as follows: In section 2, a new auto-Bäcklund
transformation of (4) is obtained by truncating the Laurent series expansion at O(w0). In
particular, (4) can reduce to a linear system involving three linear partial differential equations.
In section 3, some explicit and exact solutions are obtained. Finally, some conclusions and
some open questions are given in section 4.
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2. The auto-Bäcklund transformation

Though the system (4) does not pass the Painlevé test, it is important to derive an auto-
Bäcklund transformation of (4), which is useful to seek the exact solutions of (4). Expanding
both u(x, y, t) and η(x, y, t) in (4) about the same singular manifold w(x, y, t) = 0 [10]
yields

u(x, y, t) =
∞∑

j=0

ujw
j η(x, y, t) =

∞∑
j=0

ηjw
j . (5a)

By balancing the highest order linear term ηx and nonlinear terms (u2)x in (4a) as well as
uxxxx and (uη)xx in (4b), we truncate the Laurent series expansions (5a) at O(w0) as

u(x, y, t) = u0

w
+ u1 η(x, y, t) = η0

w2
+

η1

w
+ η2 (5b)

where u0, u1, η0, η1, η2, w are functions of (x, y, t) to be determined. The substitution of (5b)
into (4) gives rise to

u0 = 2µwx µ = ±1 η0 = −2w2
x η1 = 2wxx. (5c)

Therefore the expression (5a) further reduces to

u(x, y, t) = 2µwx

w
+ u1 = 2µ∂x log[w(x, y, t)] + u1(x, y, t)

η(x, y, t) = −2w2
x

w2
+

2wxx

w
+ η2 = 2∂2

x log[w(x, y, t)] + η2(x, y, t)

(6)

where (u1, η2) solves (4). The substitution of (6) into (4a) leads to

ut + ηx + 1
2 (u2)x = 2µ∂x∂t log[w(x, y, t)] + 2∂3

x log[w(x, y, t)] + 2∂x(∂x log[w(x, y, t)])2

+ 2µ∂x(u1∂x log[w(x, y, t)]) + u1,t + η2,x + 1
2

(
u2

1

)
x

= 0. (7)

Since (u1, η2) satisfies (4a), with the aid of symbolic computation (Maple), we know that (7)
reduces to

ut + ηx + 1
2 (u2)x = ∂x

{
2µ∂t log[w(x, y, t)] + 2∂2

x log[w(x, y, t)]

+ 2(∂x log[w(x, y, t)])2 + 2µu1∂x log[w(x, y, t)]
}

= 2µ∂x

[
1

w
(wt + µwxx + u1wx)

]
= 0. (8)

Similarly, the substitution of (6) into (4b) gives rise to

ηtx + (uη + u + uxx)xx + uyy = ∂x

{
2∂2

x ∂t log[w(x, y, t)] + 4µ
(
∂2
x log[w(x, y, t)]

)2

+ 4µ(∂x log[w(x, y, t)])
(
∂3
x log[w(x, y, t)]

)
+ (2µη2 + 2u1,x)∂

2
x log[w(x, y, t)] + 2µη2,x∂x log[w(x, y, t)]

+ 2µ∂2
x log[w(x, y, t)] + 2u1∂

3
x log[w(x, y, t)]

+ 2µ∂4
x log[w(x, y, t)] + 2µ∂2

y log[w(x, y, t)]
}

+ η2,tx + (u1η2 + u1 + u1,xx)xx + u1,yy = 0. (9)
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Since (u1, η2) satisfies (4b), it follows that (9) reduces to

ηtx + (uη + u + uxx)xx + uyy = ∂x

{
4w2

x

w3
(wt + µwxx + u1wx)

− 2wxx

w2
(wt + µwxx + u1wx) − 4wx

w2
∂x(wt + µwxx + u1wx)

− 2µ

w2

[
(η2 + 1 − µu1,x)w

2
x + w2

y

]
+

2

w
∂2
x (wt + µwxx + u1wx)

+
2µ

w
[(η2 + 1)wxx + η2,xwx + wyy − µu1,xxwx]

}
= 0. (10)

From (8) we get

wt + µwxx + u1wx = wq(t, y) (11)

where q(t, y) is an arbitrary smooth function of t and y. The substitution of (11) into (10)
leads to

−w2h(t, y) + w[(η2 + 1)wxx + η2,xwx + wyy − µu1,xxwx] − [
(η2 + 1 − µu1,x)w

2
x + w2

y

] = 0

(12)

where h(t, y) is also an arbitrary smooth function of t and y.
Therefore from the above calculation we have the conclusion:

Proposition. Expression (6) is an auto-Bäcklund transformation of (2+1)-dimensional
Eckhaus-type extension of the dispersive long wave equation (4), where (u1, η2) is a solution
of (4), and w(x, y, t), u1(x, y, t), η2(x, y, t) satisfy (11) (or (8)) and (12) (or (10)).

Remark 1. Let q = h = 0 in (11) and (12). Then we get the overdetermined set of linear
partial differential equations from (11) and (12)


wt + µwxx + u1wx = 0

(η2 + 1)wxx + wyy + (η2,x − µu1,xx)wx = 0

wy ∓ wx

√
µu1,x − η2 − 1 = 0 µu1,x − η2 − 1 > 0

(13)

where (u1, η2) is some known solution of (4).

Remark 2. If we take the special solution of (4) as (u1 = 0, η2 = c) and q = h = 0, then the
auto-Bäcklund transformation (6) with (11) and (12) reduces to

u(x, y, t) = 2µ∂x log[w(x, y, t)] η(x, y, t) = 2∂2
x log[w(x, y, t)] + c (14)

where w(x, y, t) satisfies the overdetermined set of linear partial differential equations

wt + µwxx = 0 (15a)

(c + 1)wxx + wyy = 0 (15b)

wy ± wx

√
−(c + 1) = 0 c + 1 < 0. (15c)

Remark 3. (i) Equation (15a) is the well-known linear heat equation. (ii) Equation (15b) is the
second-order linear wave equation. (iii) Equation (15c) is a first-order linear wave equation.
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3. Explicit and exact solutions of the system (4)

In the following we would like to extract some physical exact solutions of (4) by studying the
above-mentioned auto-Bäcklund transformation.

Type 1. When we take the initial solution of (4) as [u1 = c1y + c2, η2 = η2(t, y)], since the
function w of every term in (11) or (12) has the same order, we assume that w(x, y, t) is of
the form

w(x, y, t) = P(t, y) + exp[�(t, y)x + �(t, y)] (16)

where P(t, y) �= 0,�(t, y) �= 0, �(t, y) are functions to be determined.
With the aid of Maple, substituting (16) into (11) and (12) and equating the coefficients

of these xi exp[ j(�x + �)] leads to the following set of partial differential equations:


�t = �y = 0
�t + µ�2 + u1� = q

Pt = Pq

�yy = h

P (η2 + 1)�2 + P�2
y − 2Py�y + Pyy = hP

−P 2
y + PPyy = hP 2.

(17)

Therefore we have exact solutions of (4) as:

Family 1. When P(t, y) > 0, we have

u(x, y, t) = µ� tanh
(

1
2 [�x + �(t, y) − log P(t, y)]

)
+ u1 + µ� (18)

η(x, y, t) = 1
2�2 sech2

(
1
2 [�x + �(t, y) − log P(t, y)]

)
+ η2(t, y) (19)

where � �= 0 is a constant, and �(t, y), P (t, y) satisfy (17).

Family 2. When P(t, y) < 0, we have

u(x, y, t) = µ� coth
(

1
2 [�x + �(t, y) − log |P(t, y)|]) + u1 + µ� (20)

η(x, y, t) = 1
2�2 cosech2( 1

2 [�x + �(t, y) − log |P(t, y)|]) + η2(t, y) (21)

where � �= 0 is a constant, and �(t, y), P (t, y) satisfy (17).

In the following we consider only the case P(t, y) > 0. For example, from (17) we have

P(t, y) = p = const. q(t, y) = h(t, y) = 0 �(t, y) = θ = const.

�(t, y) = θ(−c1t + c3)y − (c2θ + µθ2)t η2(t, y) = − 1

p
(−c1t + c3)

2 − 1
(22)

where c1, c2, c3 are all arbitrary constants.
Therefore when p > 0, we have the exact solution of (4)

u = µθ tanh 1
2 [θx + θ(−c1t + c3)y − (c2θ + µθ2)t − log p] + c1y + c2 + µθ (23a)

η = 1

2
θ2 sech2 1

2
[θx + θ(−c1t + c3)y − (c2θ + µθ2)t − log p] − 1

p
(−c1t + c3)

2 − 1. (23b)
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It follows that when c1 �= 0, the solution (23) is a nontravelling wave solution of (4), while
when c1 = 0, we have the travelling wave solution of (4)

u = µθ tanh 1
2 [θx + θc3y − (c2θ + µθ2)t − log p] + c2 + µθ (24a)

η = 1

2
θ2 sech2 1

2
[θx + θc3y − (c2θ + µθ2)t − log p] − c2

3

p
− 1. (24b)

Remark 4. Let z = θx + θc3y − (c2θ + µθ2)t − log p. Then when z → ±∞, we have that

u → (±1 + 1)µθ + c2 = const and η → − c2
3
p

− 1 = const.

Type 2. When (u1 = const, η2 = const < −1), which is a trivial solution of (4), from (13)
we can determine

w(x, y, t) = a0 +
N∑

j=1

aj exp
[
θjx ± yθj

√
−(η2 + 1) − (

u1θj + µθ2
j

)
t + ej

]
(25)

where η2 + 1 < 0, ej , θj and aj are constants and a0aj θj �= 0, θi �= θj (i �= j).
Therefore we have exact solutions of (4)

u = 2µ
∑N

j=1 aj θj exp
[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

]
a0 +

∑N
j=1 aj exp

[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

] + u1 (26a)

η = 2
∑N

j=1 aj θ
2
j exp

[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

]
a0 +

∑N
j=1 aj exp

[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

]

−
(∑N

j=1 aj θj exp
[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

])2

(
a0 +

∑N
j=1 aj exp

[
θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej

])2 + η2.

(26b)

In particular, when N = 1, from (26a, b) we get the travelling wave solution of (4) which
is equivalent to (24a, b). When N = 2, we derive the exact solution of (4)

u = 2µ(a1θ1 eξ1 + a2θ2 eξ2)

a0 + a1 eξ1 + a2 eξ2
+ u1 (27a)

η = 2
[
a0a1θ

2
1 eξ1 + a0a2θ

2
2 eξ2 + a1a2(θ1 − θ2)

2 eξ1+ξ2
]

[a0 + a1 eξ1 + a2 eξ2 ]2
+ η2 (27b)

where ξj = θjx ± yθj

√−(η2 + 1) − (
u1θj + µθ2

j

)
t + ej (j = 1, 2), a0a1a2θ1θ2 �= 0, θ1 �= θ2.

Type 3. When u1 = 0, η2 = const (η2 + 1 < 0), following our idea [19], we know that
w(x, y, t) in (15) has the polynomial solution in the form

w =
n∑

i=0


(−µ)(n−i)(n − i)!

(
n

n − i

) 2(n+1−i)∑
j=1

Ai

(
x ± √−(η2 + 1)y

)2(n+1−i)−j

(2(n + 1 − i) − j)!


 (t − t0)

i

(28)

where A′
i , t0 are constants.
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Therefore we have infinitely many rational solutions of (4)

u =
2µ

∑n
i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

) ∑2(n−i)+1
j=1

Ai(x±√−(η2+1)y)2(n−i)+1−j

(2(n−i)+1−j)!

]
(t − t0)

i

∑n
i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

) ∑2(n+1−i)
j=1

Ai(x±√−(η2+1)y)2(n+1−i)−j

(2(n+1−i)−j)!

]
(t − t0)i

(29a)

η =
2
∑n

i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

) ∑2(n−i)
j=1

Ai(x±√−(η2+1)y)2(n−i)−j

(2(n−i)−j)!

]
(t − t0)

i

∑n
i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

) ∑2(n+1−i)
j=1

Ai(x±√−(η2+1)y)2(n+1−i)−j

(2(n+1−i)−j)!

]
(t − t0)i

− 2




∑n
i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

)∑2(n−i)+1
j=1

Ai(x±√−(η2+1)y)2(n−i)+1−j

(2(n−i)+1−j)!

]
(t − t0)

i

∑n
i=0

[
(−µ)(n−i)(n − i)!

(
n

n − i

)∑2(n+1−i)
j=1

Ai(x±√−(η2+1)y)2(n+1−i)−j

(2(n+1−i)−j)!

]
(t − t0)i




2

+ η2.

(29b)

In particular, when n = 1, we have from (34) the rational solution of (4) as

u = 2µ[A1(−µz + t − t0) + A2]

(A1z + A2)(t − t0) − µ
(

1
2A1z2 + A2z + A3

) (30a)

η = 2
[
A2

1(t − t0)
2 +

(
µA2

1z − A1A2(2 + µ)
)
(t − t0) + R

]
[
(A1z + A2)(t − t0) − µ

(
1
2A1z2 + A2z + A3

)]2 + η2 (30b)

where A1, A2, A3, t0 are constants, z = x ± y
√−(η2 + 1), R = − 1

2A2
1z

2 + A1A2(2µ +
1)z + A1A3 − A2

2. The physical meaning of these rational solutions needs to be explored
further.

Type 4. When u1 = const, η2 = const (η2 + 1 < 0), we know that w(x, y, t) in (15) has the
solution in the form

w =
N∑

j=1

bj exp
[
θjx ± yθj

√
−(η2 + 1) − (

u1θj + µθ2
j

)
t
]

+
n∑

i=0


(−µ)(n−i)(n − i)!

(
n

n − i

)

×
2(n+1−i)∑

j=1

Bi

(
x ± √−(η2 + 1)y − u1t

)2(n+1−i)−j

(2(n + 1 − i) − j)!


 t i (31)

where b′
i , B

′
i are all constant.

Therefore we have infinitely many exact solutions of (4)

u = 2µwx/w + u1 η = 2wxx/w − 2w2
x

/
w2 + η2 (32)
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where

wx =
N∑

j=1

bj θj exp
[
θjx ± yθj

√
−(η2 + 1) − (u1θj + µθ2

j )t
]

+
n∑

i=0


(−µ)(n−i)(n − i)!

(
n

n − i

)

×
2(n−i)+1∑

j=1

Bi

(
x ± √−(η2 + 1)y − u1t

)2(n−i)+1−j

(2(n − i) + 1 − j)!


 t i (33)

wxx =
N∑

j=1

bj θ
2
j exp

[
θjx ± yθj

√
−(η2 + 1) − (

u1θj + µθ2
j

)
t
]

+
n∑

i=0


(−µ)(n−i)(n − i)!

(
n

n − i

)

×
2(n−i)∑
j=1

Bi

(
x ± √−(η2 + 1)y − u1t

)2(n−i)−j

(2(n − i) − j)!


 t i (34)

Particularly, when N = n = 1, we have the nontravelling wave solution of (4)

u = µ

[
θ1 − g(x, y, t)

f (x, y, t)

]
tanh

1

2
[ξ1 − log f (x, y, t)] + u1 (35a)

η = 1

2

[
θ1 − g(x, y, t)

f (x, y, t)

] [
θ1 − fx(x, y, t)

f (x, y, t)

]
sech2 1

2
[ξ1 − log f (x, y, t)]

+
fx(x, y, t)g(x, y, t) − f (x, y, t)gx(x, y, t)

f 2(x, y, t)
tanh

1

2
[ξ1 − log f (x, y, t)] + η2

(35b)

where

g(x, y, t) = B1
[−µ

(
x ± y

√
−(η2 + 1) − u1t

)
+ t

]
+ B2

f (x, y, t) = [
B1

(
x ± y

√
−(η2 + 1) − u1t

)
+ B2

]
t − µ

[
1
2B1(x ± y

√
−(η2 + 1) − u1t)

2

+ B2(x ± y
√

−(η2 + 1) − u1t) + B3
]

> 0

ξ1 = θ1x ± yθ1

√
−[(η2 + 1) − (

u1θ1 + µθ2
1

)
t.

When f (x, y, t) < 0, we have another solution of (4)

u = µ

[
θ1 − g(x, y, t)

f (x, y, t)

]
coth

1

2
[ξ1 − log |f (x, y, t)|] + u1 (36a)

η = 1

2

[
θ1 − g(x, y, t)

f (x, y, t)

] [
θ1 − fx(x, y, t)

f (x, y, t)

]
cosech2 1

2
[ξ1 − log |f (x, y, t)|]

+
fx(x, y, t)g(x, y, t) − f (x, y, t)gx(x, y, t)

f 2(x, y, t)

× coth
1

2
[ξ1 − log |f (x, y, t)|] + η2. (36b)
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Remark 5. The above-mentioned solutions have been tested for correctness via Maple
software.

4. Conclusions and discussions

In summary, we have obtained an auto-Bäcklund transformation by truncating the Laurent
series expansion at O(w0), though the (2+1)-dimensional Eckhaus-type extension of the
dispersive long wave equation (4) has no Painlevé property. Moreover many types of
exact solutions have been found through further considering the above-mentioned Bäcklund
transformation. These obtained families of solutions may be of important significance in
explaining some physical phenomena related to system (4). It should be pointed out that
other types of exact solutions of (4) may also be obtained using the obtained auto-Bäcklund
transformation (6) and other ansätze. Moreover it is also important to seek other useful
transformations to extract more types of solutions of (4). For example, if we introduce the
Hirota bilinear operators Dt,Dx,Dy as follows [20]

Dm
t Dn

xD
k
yF · G =

(
∂

∂t
− ∂

∂t ′

)m (
∂

∂x
− ∂

∂x ′

)n (
∂

∂y
− ∂

∂y ′

)k

×F(x, y, t)G(x ′, y ′, t ′)|t=t ′,x=x ′,y=y ′ (37)

then under the transformation (6), from (8) and (10) we can change system (4) into the
following bilinear form

(
Dt + u1Dx + u1,x + D2

x

)
wx · w = 0 (38a)

[(η2 + 1)Dx + η2,x − µu1,x + µu1,xDx]wx · w + Dywy · w = 0 (38b)

where (u1, η2) is a solution of (4), which may be used to seek multi-soliton solutions of (4).
These will be further considered.
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